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A B S T R A C T 

Objective: The study focused on verifying the impact of the calendar and seasonal effects on the accuracy of 

forecasts of cash withdrawals from automated teller machines (ATMs). In this article, we investigated a possi-

ble use of the so-called trigonometric seasonality, the Box-Cox transformation, ARMA errors, trend, and sea-

sonal components (TBATS) models to forecast withdrawals from ATMs. In practice, the SARIMA model is 

widely used as a forecasting tool. However, the major limitation of SARIMA models is that it allows just one 

single seasonality pattern to be taken into account, e.g., weekly seasonality. At the same time, cash withdraw-

als from ATMs display overlapping multi-seasonality. Therefore, the goal of this article is to compare the 

SARIMA model with the TBATS model, both in basic forms and forms extended with event-specific dummies. 

Research Design & Methods: Empirical research was conducted by means of fitting SARIMA and TBATS mod-

els to daily time series of withdrawals from 74 ATMs managed by one of the largest ATM operators in Poland. 

The dataset covered the period of 2017-2019. 

Findings: Forecasting levels of cash withdrawals plays a crucial role in the management of ATM networks, both 

in the case of a single ATM as well as the whole network. Prediction accuracy has a direct impact on the oper-

ational costs of the network. These costs result from activities such as freezing cash in an ATM, preparing it, 

and transporting it to an ATM. Therefore, the choice of a proper forecast model is of special importance. 

According to statistical evidence in our study, the basic TBATS model gives more accurate forecasts than the 

basic SARIMA model widely used in practice. 

Implications & Recommendations: The multi-seasonality of ATM withdrawals means that it is necessary to 

use techniques that take such phenomena into account in a single joint model. Multi-seasonality can be mod-

elled using TBATS models. The study confirmed that TBATS models can be considered useful alternatives in 

planning cash replenishments in ATM networks. 

Contribution & Value Added: This article is an extensive empirical study on the selection of proper methods and 

forecasting models necessary to predict withdrawals from ATMs with overlapping multi-seasonalities and calen-

dar effects. We proved that taking seasonal and calendar effects into account when forecasting withdrawals from 

ATMs significantly reduces forecast errors. Statistically significant improvement in forecast accuracy was ob-

served both for SARIMA and TBATS. After taking calendar effects into account, TBATS forecast errors were slightly 

smaller than those resulting from corresponding SARIMA models. However, this result is statistically insignificant. 

The results of this study imply a need for further studies on the applications of TBATS models in forecasting the 

required cash level in ATMs, which in turn may help improve the efficiency of ATMs network management. 
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INTRODUCTION 

Automated teller machines (ATMs) are computerized telecommunication devices. They provide the cus-

tomers of financial institutions with a method of performing financial transactions in a public space with-

out the need for a human clerk. Automated teller machines are part of a so-called ‘cash supply chain,’ 

‘cash chain,’ or ‘currency chain,’ which generally consists of a Central Bank, mints/banknote printers, a 

distribution network, commercial banks, public customers, and businesses. A cash chain is characterized 

by the forward and backward motion of coins and notes to distribute cash to the public and ensure that 

the cash in circulation remains ‘fit’ (i.e., valid for circulation). The return flow of cash serves the purpose 

of removing all unfit cash (especially notes) and returning it to the Central Bank. The cash chain can be 

classified as a closed-loop supply chain because, ideally, over time, no cash leaves circulation. Automated 

teller machines are supplied/replenished by the distribution network, while the public or business cus-

tomers demand/withdraw cash. Of the wide variety of ATM types currently deployed globally, the classic 

ATM with the ability to dispense only banknotes is still the most widespread. 

The most recent reports of the National Bank of Poland (NBP; see the report of NBP for the first 

quarter of 2022) stress that withdrawals are becoming fewer in number. However, the value of 

individual transactions is becoming larger. This tendency, which has been observed in recent years, 

is not profitable for the operators of ATM networks. This situation has two negative consequences. 

First of all, the growing value of individual withdrawals means that operators must use more cash 

to replenish ATMs. Therefore, the costs of frozen cash and transporting it are higher. Secondly, the 

reduced number of withdrawals is a source of lower income from interchange and from the adver-

tisements that are displayed on the screen for customers while they are withdrawing cash from 

ATMs. If this tendency continues then the revenues of ATM operators will fall. In this situation, the 

operators of ATM networks must try to reduce the costs of servicing the networks. A substantial 

proportion of these costs results from transporting cash and freezing it. 

The costs of cash management can be as high as 50% of the total service costs of ATMs (Simutis et 

al., 2007; Toi, 2011; Suder, 2015). The greatest challenge faced by ATM operators is to minimize the 

charges resulting from their cash service. At the same time, the operator tries to ensure that there is 

always an appropriate amount of cash in ATMs. In other words, the goal is to keep at an acceptably 

low level the probability that the user of an ATM faces a lack of cash in the ATM.  

Cash management goals can be achieved if cash supplies in ATMs are properly managed. The replen-

ishment process depends on proper, accurate forecasts of cash withdrawals from ATMs. Therefore, ATM 

operators, supported by researchers, are trying to find better forecast methods that will ensure better 

forecast quality. Thus, one research direction consists in testing the new models with respect to their 

effectiveness in forecasting cash demand. Some classes of models that are well-known in other areas of 

applied econometrics have not been verified or even used in cash withdrawals from ATMs. In particular, 

many special calendar effects have not been included in the forecasting models used.  

The most frequently used techniques in forecasting withdrawals from ATMs are based on SARIMA 

models. These models take seasonality (e.g., weekly seasonality) into account but do not reflect multi-

seasonality in the same time interval (e.g., daily, weekly, monthly, all in the same time interval). At the 

same time, cash withdrawals from ATMs display multi-seasonality. The overlapping seasonalities imply 

that when modelling withdrawals techniques that consider multi-seasonality in one model should be 

used. The multi-seasonality of processes is modelled in different fields of study by TBATS models but 

not in the ATM framework. Therefore, our task was to compare the forecasts of withdrawals by tradi-

tional SARIMA models to TBATS models (not used in modelling withdrawals from ATMs). Moreover, 

we verified the extent to which including seasonal and calendar effects improves forecast quality.  

Our research was based on daily withdrawals from 74 ATMs managed by one of the largest ATMs 

networks in Poland. The data used encompassed the period between January 2017 and December 2019. 

This article is divided into five sections. The next section will present the literature overview con-

cerning the forecast of withdrawals from ATMs and the application of TBATS models in the forecasts 
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of selected time series. Based on the literature, in the final part of this section, we will state our re-

search hypotheses. In section three, we will describe the data used in the article. In particular, we will 

define the seasonal and calendar effects included in the models and present the models used in this 

study. In section four, we will show the computations results. In the last part of the article, section five, 

we will present the conclusions and limitations of this research. Replication codes accompanying the 

article are available in the Appendix at the end of the article. 

LITERATURE REVIEW AND HYPOTHESES DEVELOPMENT 

Over the last two decades, ATMs have been one of the most important sources of cash. However, the 

literature concerning the functioning of ATMs, logistics, convoy of cash, and cash management in ATM 

networks is rather scarce. Currently, as of 2 October 2022, the Scopus database lists less than 1000 articles 

that mention all aspects of ATMs’ operations. Most of these contributions (almost 80%) consider issues 

concerning ATMs construction, the service of ATMs, and their functioning as tele-informatic devices. Con-

tributions on the time series of ATM withdrawals make up 12% of the total number of articles on ATMs. 

The low number of articles on withdrawals is caused to a large extent by a lack of respective data. 

Articles concerning the management of ATM networks mostly present two basic questions. One 

concentrates on the econometric properties of the time series of withdrawals with a special focus on 

seasonal and calendar effects. The other issue most frequently considered is the selection of proper 

methods and forecasting models necessary to predict withdrawals from ATMs. 

An interesting article on seasonal and calendar effects was written by Rodrigues and Esteves (2010), 

who considered their influence on withdrawals from ATMs in Portugal. They took the following calendar 

effects into account: the day of the week, the week of the month, the month of the year, and the effects 

of church and national holidays. Rodrigues and Esteves stress the significance of these effects with re-

spect to daily withdrawals from ATMs. Their results show the impact of seasonal and calendar effects on 

the structure of the time series of withdrawals from ATMs. The authors used the quarterly national ac-

counts’ procedure of adjusting data for seasonality and working days effects. This procedure allowed 

them to apply the ATM series as an instrument for forecasting private consumption. 

Findley and Monsell’s results (2009) are mostly in line with those of Rodrigues and Esteves (2010). 

Findley and Monsell established the impact of not only seasonal effects (day of week, week of month, 

month of year) but also church and national holidays. They suggest that in modelling and forecasting 

the time series of withdrawals, it is necessary to consider the specific day and month. The authors used 

X-12-ARIMA (Census Bureau’s seasonal adjustment program). 

The time series of withdrawals are the subject of an article by Cabrero et al. (2009). Among other 

issues, they investigated the daily cash demand from ATMs. They suggest daily, monthly, and yearly pat-

terns. Cabrero et al. (2009) indicated payment patterns and customers behaviour. They emphasize the 

effect of the trading day (an increase in banknotes directly before the weekend and a decrease after 

weekends). Similarly, the number of banknotes is lower in the first half of the month and higher at the 

end of the month. Moreover, the authors draw attention to the unavoidable impact of holidays on the 

demand for cash from ATMs. Cabrero et al. (2009) compared two competing approaches to model sea-

sonality in daily time series: the ARIMA-based approach and the structural time series approach. 

Simutis et al. (2008), Takala and Viren (2007), and Toit (2011) indicate that withdrawals from 

ATMs can be impacted by paydays in institutions and firms, holiday periods, and other factors that 

determine trends and weekly, monthly, and yearly cycles. These calendar effects are important 

within the framework of the logistics of ATM networks. 

Calendar effects in the time series of withdrawals are analyzed in articles by Gurgul and Suder 

(2012, 2016), and Suder (2015). They investigate calendar and seasonal effects on the time series 

of the number and size of withdrawals from the ATMs of one of the largest network operators in 

Poland. The results of their analyses are in line with the previously mentioned analyses. The authors 

stress that calendar effects can be observed in the time series of ATM withdrawals (both the size 

of particular withdrawals and the number of withdrawals). However, the impact of particular ef-

fects depends on an ATM’s location. 
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In the articles reviewed so far, the authors focus on detecting calendar and seasonal effects and 

conclude that they should be taken into account when predicting ATM withdrawals. However, there 

are also contributions which try to include calendar and seasonal effects in models that forecast 

cash replenishments. 

Wagner (2010) detected seasonal and calendar effects not only in the time series of cash with-

drawals from the analyzed ATMs but also included these effects in his prediction models. He used the 

SARIMA and VAR models. His goal was to predict the time series of withdrawals from ATMs which 

belong to one European bank. He concluded that modelling special days (i.e. days with calendar or 

seasonal effects in day or month) using dummies is better than forecasting without taking calendar or 

seasonal effects into account. Forecast errors in extended models are essentially lower.  

Gurgul and Suder (2013) apply SARIMA models and switching models to the forecast of withdraw-

als from ATMs and Bielak et al. (2015) describe the results of forecasting withdrawals from ATMs in 

bank branches using the ARMAX model and neural networks.  

According to Rafi et al. (2021), the changing demands of users and changing seasonal patterns 

are very challenging problems for an ATM network. Financial institutions must fill each ATM with 

the optimal amount of cash. In this study, the authors used a time series model similar to ARIMA. 

Furthermore, this study used ATM data from six different financial organizations in Pakistan. There 

were 2040 distinct ATMs and 18 months’ worth of replenishment data from these ATMs. The mean 

absolute percentage error (MAPE) and symmetric mean absolute percentage error (SMAPE) were 

used to evaluate the models. The suggested model, based on ARIMA, turned out to be better than 

models based on neural networks (lower MAPE and SMAPE in the case of ARIMA). 

The goal of Fallahtafti et al. (2022) was to forecast the ATM cash demand for the periods both 

before and during the Covid-19 pandemic. Their other aim was to compare several statistical (based 

on ARIMA) and machine learning models in terms of different algorithms and assumptions. To 

achieve this goal, the ATMs were first clustered based on accessibility and surrounding environ-

mental factors. These factors significantly affect the cash withdrawal pattern. The authors found 

that during Covid-19 and in times of shocks in demand and huge volatility of withdrawals, the sta-

tistical models (ARIMA and SARIMA) can provide better forecasts. According to the authors, the 

probable reason for this is that such models perform well, especially for short-term predictions. 

This kind of model allows overfitting to be minimized. 

A relatively large number of authors who write about forecasting ATM withdrawals use neural net-

works. Including calendar effects, they are creating neural networks and show that their method is 

better than autoregression models. Interesting empirical studies on the applications of neural net-

works have been conducted by Simutis et al. (2007; 2008) and Acuña et al. (2012). They attempt to 

optimize cash management by selecting an appropriate withdrawal prediction model. The authors 

demonstrate that the use of neural networks can reduce network service costs by as much as 20%. 

More recent articles on the use of neural networks in forecasting withdrawals from ATMs are 

by Serengil and Ozpinar (2019), Ekinci et al. (2015), Zandevakili and Javanmard (2014), Bhandari 

and Gill (2016). The promising computer-supported methods with respect to ATM applications may 

be based on evolutionary algorithms which are thoroughly presented in Sieja and Wach (2019). 

They also indicate the possibility of their implementation for the needs of the economy, especially 

the entrepreneurial economy. 

To the best of our knowledge, previous studies have not suggested how to model usage or fore-

cast withdrawals from ATMs using TBATS. Notably, we checked the Scopus and Google Scholar da-

tabases on 2 October 2022. This result is surprising, because this class of model is widely used in 

forecasting time series. Moreover, the authors of these contributions demonstrate that forecasts 

obtained from TBATS models are often more accurate than the forecasts derived from SARIMA 

models or neural networks. We used the nnetar function available in R package forecast. Please 

note that numerical experiments with neural networks convinced us that for our data set, SARIMA 

models produce more accurate predictions than neural networks. As a consequence, we focused 

on the comparison between TBATS and SARIMA. 
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Important contributions to TBATS theory and applications, as well as packages (in the R environ-

ment), have been developed by De Livera et al. (2011). Moreover, TBATS models are used as forecast-

ing tools in various types of time series. 

Perone (2022) compared ARIMA, exponential smoothing (ETS), neural network autoregression 

(NNAR), TBATS and hybrid models to forecast the second wave of Covid-19 hospitalizations in Italy. He 

found that the best single models were NNAR and ARIMA for patients from both groups of patients, de-

pending on the severity of the illness. However, for patients with mild symptoms, the most accurate were 

the hybrid models NNAR–TBATS, ARIMA–NNAR, and ARIMA–NNAR–TBATS. Perone concludes that com-

pared to the single models the hybrid statistical models capture a greater number of properties in the 

medical time series data structure. The predictions seem to suggest interesting practical implications. 

Talkhi et al. (2021) consider similar forecasting questions with respect to Covid-19 in Iran and 

also use the TBATS model. This is not the only attempt to forecast using TBATS models. Applying 

TBATS, ARIMA, their statistical hybrid, and a mechanistic mathematical model combining the best 

of the previous models, Sardar et al. (2020) attempted to predict the daily confirmed cases of Covid-

19 across India and in five different Indian states (Delhi, Gujarat, Maharashtra, Punjab, and Tamil 

Nadu) for the second half of May 2020. The ensemble model demonstrated the best prediction 

capacity and suggested that daily Covid-19 cases would significantly increase in the forecast win-

dow considered. Furthermore, the lockdown measures would be more effective in states with the 

highest percentages of symptomatic infection. 

An interesting contribution using combined TBATS with the support vector machine (SVM) model 

of minimum and maximum air temperatures applied to wheat yield prediction at different locations in 

Europe is that of Gos et al. (2020). They found that the precision of air temperature prediction im-

proves when using combined SVM/TBATS modelling, compared to pure TBATS or SVM modelling. De-

pending on the locations, which can be related to different climatic conditions, this improvement was 

between 3% and 14% for the maximum daily air temperature. The interval of improvement varied 

between 5% and 25% for the minimum daily air temperature. 

Munim (2022) found that in modelling the container freight rate, the TBATS model or a combination 

of TBATS and SARIMA forecasts are better than the SARIMA and seasonal neural network autoregression 

(SNNAR) models as well as their combinations, both in training and test-sample forecasts. Munim em-

phasizes that none of the forecasting methods performs better than the TBATS model. Furthermore, for 

the robustness of the cross-validation, each test-sample data point is forecast using model re-estimation, 

which improves the forecast performance of the SARIMA and SNNAR models but not of TBATS. 

It follows from this literature overview that there are seasonal and calendar effects in the time 

series of withdrawals from ATMs. They should be included in the forecast models. Moreover, the 

literature overview convinces us that TBATS models can be useful. Therefore, we formulated the 

following hypotheses: 

H1: Taking seasonal and calendar effects into account when forecasting withdrawals from 

ATMs reduces forecast errors. The improvement of forecast accuracy is statistically signif-

icant and occurs for both SARIMA and TBATS. 

H2: Forecast errors obtained in the TBATS model are smaller than those resulting from using 

the SARIMA model. 

RESEARCH METHODOLOGY 

In this part of the article, we will describe the structure of the data used in the analysis. We will also 

present the methodology and models used in the empirical part of the article. Moreover, we will define 

the procedure used to compare the models. 

Sample and Data Collection 

We analyzed the dataset on withdrawals from 74 ATMs covering the period from 1 January 2017 to 

31 December 2019, i.e. before the outbreak of the Covid-19 pandemic. We wanted to verify the 
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usefulness of TBATS models in ATM’s withdrawal forecasting without facing the possible bias in the 

data caused by the pandemic. 

Referring to other contributions, we checked the basic econometric properties of the time series 

of the withdrawals. To illustrate the dynamics of examined data, Figure 1 presents the main features 

of the time series of withdrawals from examined ATMs.1 

 

 

 

 
 

 

 

 

 

                                                                 
1 Access to the complete dataset used in this article is possible after contacting the corresponding author and obtaining 

acceptance of such a request by the data provider. 

Panel A 

Panel B 

Panel C 
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Figure 1. Main features of time series of ATM withdrawals 

Note: Panels A-C show 2018 withdrawal data in one-month slices for a particular ATM, Panel D shows a raw periodogram 

for a particular ATM in the period 2017-2019, Panel E illustrates boxplots of withdrawals for selected nine types of special 

days (numbers 1-9 on the x-axis) and typical days (0 on the x-axis) for a particular ATM over the examined period, Panel F 

shows weekly withdrawal data in February 2018 for a particular ATM. 

Source: own elaboration. 

Panel D 

Panel E 

Panel F 
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Figure 1 provides insights on the list of possible effects occurring in the ATM-related dataset. Panels 

A-C in Figure 1 present the exemplary ATM withdrawal data.2 The presented time series clearly exhibits 

seasonal patterns. In the next step, we conducted trend analysis. The main reason for the presence of a 

deterministic trend in most of the analyzed series on ATM withdrawal was the general trend of decreas-

ing demand for cash in 2017-2020 (see NPB report for the first quarter of 2022), which translated into a 

decrease in the total daily amount of withdrawals from ATMs. This type of trending behaviour was found 

for most of the examined ATMs. However, for some ATMs, there was a noticeable increase in the size of 

withdrawals. This may be due to the development of infrastructure in the neighbourhood of the ATM 

location or the removal of nearby ATMs. Unfortunately, due to the lack of information on the location of 

ATMs, it is not possible to verify the reason for this increase in demand for cash at a given ATM. After 

conducting linear and logistic trend analysis for the 2017-2019 sample, we found that, in general, the 

logistic trend not only fits best the ATM withdrawals data but at the same time the shape of the fitted 

trend line, i.e. logistic S-curve, seems to correspond to typical stages of ATM development (installation, 

fast development, stabilization). We did not find a single set of parameters of the trend function that 

would fit well to majority of the ATM’s. A visual inspection of raw periodograms (comp. Figure 1, Panel 

D) allowed us to obtain insights on possible seasonal and calendar effects occurring in the time series 

under study. Statistically significant levels of ACF (at 5% level) were found for weekly, monthly, and yearly 

seasonality for all but one ATM3 with the dominant pattern found for weekly seasonality (comp. Figure 

1, Panels D and F).4 After scanning the data (comp. Figure 1, Panel E), we decided that the following nine 

calendar effects should be taken into account in this article: 

1. Work-free holidays (such as Easter and Christmas); 

2. The tenth day of a month, when wages and salaries are most commonly paid in Poland; 

3. The first day of the month; 

4. The last day of the month; 

5. Trading Sundays; 

6. The beginning of a long weekend; 

7. The end of a long weekend; 

8. The day before the beginning of a long weekend; 

9. The day after the end of a long weekend 

The individual properties (i.e. trends, seasonal and calendar effects) of time series of ATM cash 

withdrawals were used to construct respective forecasting models, as we focused on out-of-sample 

forecasts in the study. Each effect presented in Figure 1 was derived based on withdrawal data for 

the selected ATM that strongly exhibited the given effect. Individual ATMs may vary in terms of 

intensity of a given effect, e.g., in case of some ATMS the weekly seasonality may be more pro-

nounced then in case of other ATMs. For example, Figure A2 in the appendix presents all the effects 

discussed in Figure 1 but this time derived for a single randomly selected ATM. The forecasting pro-

cedure was fully automated and implemented in the R environment. 

Forecasting Models 

In the econometric literature, backshift (�) notation is widely used when defining time series mod-

els. In particular, this operator allows one to write down ARIMA models more clearly and compre-

hensively. The operator � backshifts the values of the time series:  

                                                                 
2 For some examined ATMs, the respective time series on cash withdrawals contained some zeros that corresponded to 

various potential causes (e.g., ATMs located in shops being closed on non-trade days, random ATM failures etc.). At the 

same time, the use of a Box-Cox transformation is limited to positive time series. To handle data with zero values, the 

estimation procedure of TBATS models implemented in the tbats function in forecast package used inverse hyperbolic 

sine transformation (Johnson, 1949). Moreover, when calculating the forecast errors, we skipped the dates with known 

zero withdrawals as such cases would spuriously improve the forecast accuracy. 
3 Complete results of the initial stage of the analysis are available from authors upon request. 
4 On the periodogram, one can also see shocks for frequency 0.284 and 0.428, which are called harmonic shocks and support 

existence of 3.5 and 2.33-day cycles, respectively. The one-week cycle is a multiple of these two cycles (Bloomfield, 2000). 
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��� = ����, ���� = ����, … , �
�� = ���
 (1) 

in which �1 − �� denotes the difference of order 1, �1 − ��� denotes the second difference, and �1 − ��
 stands for the ���  difference. Taking backshift notation into account, we can define the �������, �, �� model in the following way: 

�1 − ��� − ⋯ − �������� = � + �1 +  �� + ⋯ +  !�!�"� (2) 

in which ��� =�1 − ��#�� denotes the integrated time series, ��, … , �� are parameters of ����� and  �, … ,  ! are parameters of �����, � is the order of differences, and "� is white noise. 

The SARIMA models are a further generalization of the ARIMA models. The ARIMA models are not 

able to model data with seasonality. This drawback can be omitted by generalizing the ARIMA into 

seasonal autoregressive integrated moving average (SARIMA). Using the backshift operator %�������, �, ���&, ', (�)  may be defined as follows: 

�1 − ��� − ⋯ − ������1  − +��) − ⋯ − +,�,)��1 − ��#�1 − �-)��� = = � + �1 +  �� + ⋯ +  !�!��1 + .��)  +   …   + ./�/) �"� 
(3) 

In (3), the triple ��, �, �� stands for the nonseasonal component of the SARIMA model and �&, ', (�) denotes seasonal part of the model. In detail, & stands for seasonal autoregressive order, ' denotes seasonal difference order, ( stands for seasonal moving average order, and 0 denotes 

the number of time steps for a single seasonal period.5 

The alternative group of models used in the empirical part of this article comprises the BATS and 

TBATS models.6 The name BATS/TBATS is an acronym consisting of four/five letters: T – trigonometric 

seasonality, B – the Box-Cox transformation, A – ARIMA errors, T – Trend, and S – seasonal components. 

The BATS model is a modification of exponential smoothing (double-seasonal Holt-Winters fore-

casting method). We supplemented this well-known method with the Box-Cox variance stabilizing 

transformation, ARMA model for the error term and inclusion of 1 seasonal patterns. The ARMA 

model allows one to remove the problem of autocorrelation in residuals. In short, the BATS model 

is a combination of exponential smoothing, the Box-Cox transformation, and errors of the ARMA 

process with several (not only two) seasonal components.  

The following equations (4)-(9) describe the components of the BATS model (De Livera et al., 2011): 

��2 = 3456��
2       789 : ≠ 0 

=8>���� 789 : = 0   (4) 

��2 = =��� + ?@��� + ∑ B��)CDED F � + ��  (5) 

=� = =��� + ?@��� + G��  (6) 

@� = �1 − ?�@ + ?@��� + H��  (7) 

B�D = B��)CD + ID��  (8) 

�� = ∑ �D�����D F � + ∑  D"��D!D F � + "�  (9) 

in which:  =� - denotes local level in time J; @� - component reflecting the short-term trend in time J; @ - parameter reflecting the long-term trend; B�D - K-th seasonal component in time J, where K = 1, … , 1; �� - the ARMA��, �� process; "� - white noise; G, H, ID  - smoothing parameters, where K = 1, … , 1; 

                                                                 
5 Comprehensive theoretical background for time series modelling (including ARIMA/SARIMA models) is given in detail 

in Hyndman et al. (2008) and Shumway and Stoffer (2010). 
6 A detailed theoretical introduction to BATS/TBATS models is given in a textbook by Hyndman and Athanasopoulos (2021). 
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 ? - parameter-suppressing trend.7 

Equation (4) defines the Box-Cox transformation, where : is a parameter of the transformation 

and �� is observation at time J. Equation (5) is a mathematical formula for the BATS model, consisting 

of 4 main components described in (9)-(12). Equation (6) is a formula for the local level of time series, 

(7) is a formula for the short-term trend at time J, (8) defines the K-th seasonal component at time J 

and (9) shows the formula for ������, ��. The domain of the BATS model is given by expression (10): 

��1%�:, ?, �, �, {0�, … , 0E}�  (10) 

in which:  : - the parameter of the Box-Cox transformation; �, � - time lags of ARMA��, ��; ? - suppressing parameter; 0D - the length of the K-th seasonal window, K = 1, … , 1. 

The TBATS model is a modification of the BATS model. The TBATS model employs the trigono-

metric model of seasonality. In BATS, it is assumed that 0D (K =  1, … , 1) is a natural number. In 

TBATS, this parameter can be set to any positive real number. This extension is possible due to the 

inclusion of a trigonometric model of seasonality: 

B�D = ∑ BV,�DWCVF�   

BV,�D = BV,���D �8BXVD + BV,���∗D BK�XVD + I�D ��  

BV,�∗D = −BV,���D BK�XVD + BV,���∗D �8BXVD + I�D ��  

(11) 

in which:  BV,�D  - stochastic increase in level in the K-th seasonal component, which is necessary to  

describe the change in the K-th seasonal component in time by means of sV,�∗D , where K = 1, … , 1, and [ = 1, … , \D; I�D , I�D  - smoothing parameters; \D - the number of harmonic components (at frequencies XVD = �]V
)C  where [ = 1, … , \D,) neces-

sary for the K-th component seasonal window.8 The approach is equivalent to index seasonal 

approaches when \D = )C�  for even values of 0D, and when \D = )C��
�  for odd values of 0D. 

To summarize, TBATS models are often used for forecasting for several reasons. The Box-Cox 

transformation makes it possible to stabilize the variance, which is an important advantage in em-

pirical analyses. The model allows one to simultaneously take into account many seasonal compo-

nents with integer and non-integer lengths of seasonal windows. Function tbats in forecast package 

allows for estimating the lengths of seasonal windows as described in De Livera et al. (2011). Simi-

larly to BATS, TBATS also takes the autocorrelation of residuals into account. 

The abbreviated version of the model with a defined domain is given by: 

1��1%�:, ?, �, �, {{0�, \�}, … , {0E , \E}}� (12) 

in which:  : - parameter of the Box-Cox transformation; �, � - time lags of ARMA��, ��; ? - smoothing parameters; {0D, \D} - a pair of two parameters: 0D  – the length of the K-th seasonal window, \D – number of 

Fourier terms for the K-th seasonal effect, where K = 1, … , 1. 

                                                                 
7 Although all TBATS models examined in this study were fit to detrended ATM withdrawal data, we did not impose any 

restrictions on the trend/level related parameters in (6) and (7). From various alternatives tested, we decided to use 

logistic function to remove trend from the raw data and next estimate unrestricted TBATS. As we checked such an ap-

proach resulted in better forecast accuracy compared to the case of using TBATS estimated on raw data. 
8 We followed De Livera et al. (2011) to specify TBATS model selection procedure, including the choice of the number 

of harmonics \D in the trigonometric models. For technical details see Boshnakov and Halliday (2022). 



Using trigonometric seasonal models in forecasting the size of withdrawals from… | 191

 

In our computations, we used the open-source statistical software R and IDE RStudio. To estimate 

SARIMA models, we used the R package stats. Calendar and special effects were modelled using dum-

mies in the respective models (Harvey, 1989). The sarima function in the core stats package allows one 

to use dummy variables reflecting calendar effects and special days effects. Technically, the estimation 

of such models is based on using the so-called SARIMAX formulation (also referred to as mean-cor-

rected formulation) of model (3) in which �� is replaced with �̂ = �� − 7�J�, where 7�J� can depend 

on exogenous (e.g., dummy) variables. 

To estimate TBATS models, we used the MLE-based estimation procedure described in detail in De 

Livera et al. (2011) and implemented in R in tbats function by Slava Razbash and Rob J. Hyndman. The 

function is available in the forecast package. One of the major limitations of all existing implementations 

of TBATS models, including the one available in tbats function in forecast package in R, is the lack of 

possibility of including exogenous variables. To some extent, this drawback may explain why TBATS have 

not been widely used in forecasting withdrawals from ATMs. To overcome this limitation, we followed a 

hybrid two-step approach: the TBATS models were estimated on the basis of time series on ATMs with-

drawals with calendar and special days excluded. In the second step, the withdrawals on the calendar 

and special days were separately estimated using basic ARIMA-class models. In further parts of this arti-

cle, forecasts obtained from such a two-step procedure will be referred to as forecasts from TBATS mod-

els extended with calendar and special days. The complete replication code in R illustrating full details on 

all the econometric models used in our study is available in the Appendix at the end of this article. 

Methods of Forecast Comparison 

There are standard measures which allow comparing accuracy of the forecasts of the time series ob-

tained in different models. In the case of ATM data, the most popular absolute ex-post verification 

measures, such as mean squared error (MSE) or mean absolute error (MAE), are often not appropriate 

since ATM with extremely high levels of cash withdrawals will most likely also exhibit higher levels of 

absolute forecast errors compared to ATMs with relatively low average withdrawals. The reason is 

differences in the scale of the ATM-related time series being modelled. To support this claim, one could 

recall the case of two particular ATMs in the dataset – the one with the highest average daily cash 

withdrawal (denoted in H) and the one with lowest daily withdrawal (L). As we tested MAE for H were 

on average 2276% higher than their counterparts calculated for L. Figure A1 in the Appendix illustrates 

this phenomenon in detail by showing mean levels of monthly cash withdrawals with respective levels 

of MAE. To avoid or reduce the problem of scale in the case of ATMs with significantly different values, 

we used the following relative measures (Makridakis et al., 1998): 

− mean absolute percentage error – MAPE: 

��&_��� , J`, ℎ� = ∑ b45cdC�4e5cdC45cdC b���DF`   (13) 

− symmetric mean absolute percentage error – SMAPE: 

%��&_��� , J`, ℎ� = ∑ f 45cdC�4e5cdCgh�45cdCi4e5cdC�f���DF`   (14) 

in which:  ��ciD - actual value at time J` + K; �e�ciD - forecasted value at time J` + K; ℎ - forecast horizon; J` - start of the forecast window. 

Although the MAPE measure is one of the most popular ones, it also has some drawbacks. The 

most serious one is its asymmetry. Mean absolute percentage error gives higher results in the case 

of overestimated forecasts which may happen if, for example, a given ATM unexpectedly stops 

working for some time. In such a situation, the denominator in (13) becomes very low and MAPE 

suggests that the forecasting properties of the underlying model are poor, although this effect is 

due to an unexpected event, not the model itself. This drawback was removed in a modification of 

MAPE called symmetric MAPE (SMAPE). Symmetric MAPE also has some drawbacks. It is a proper 
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measure only when both actual values and forecasted values exhibit the same sign. An additional 

reason for choosing SMAPE is the fact that – contrary to MAPE – this measure is used by the net-

work operators which provided the data for this research. 

The accuracy of the forecasts obtained using the SARIMA/TBATS models (both with and without cal-

endar effects) was tested by comparing forecast errors with a one-month and two-week (14 days) fore-

cast horizon. One-month forecasting periods are used by the data provider in the process of managing 

the ATM network. Therefore, this period was chosen in order to compare the results of our study with 

internal forecasts of the data providing company. In addition, 14-day forecasts were given attention in 

our study because in case of ATMs, which are replenished more than once a week, such a forecast hori-

zon seems useful from the operational point of view. To take yearly seasonality into account, the estima-

tion window was set as a two-year period preceding the forecast window, i.e. the estimation window for 

each model included 730 observations. Monthly forecasts were conducted for full months (i.e., for each 

forecasted month the parameter ℎ was set equal to the number of days in a given month and J` was set 

to the first day of the given month in (13) and (14)). Two-week forecasts were conducted for 12 selected 

14-day periods. The periods were chosen in a way that they included different types of calendar effects 

and other special effects (i.e., for each forecast the ℎ was set equal to 14 and J` was set equal to a given 

starting day of the forecast windows listed in Table 2). To describe periods of the forecasts, we included 

information on the types of special days in Table 1 and Table 2. Given the specification shown in Table 1 

and Table 2 one may claim that analysis of results of testing the accuracy of forecasts can help find the 

models that give best forecasts over periods with different types of calendar effects.  

Table 1. Characteristics of monthly forecasts 

Period number Forecasts periods Calendar effects in the given periods 

1 January One one-day church holiday, winter holiday, one Sunday trading day 

2 February One Sunday trading day 

3 March One Sunday trading day 

4 April Easter holiday, two Sunday trading days 

5 May Long weekend, one Sunday trading day 

6 June Long weekend, beginning of summer holidays, one Sunday trading day 

7 July Summer holiday, one Sunday trading day 

8 August Summer holiday, the beginning of the month, long weekend 

9 September Beginning of the school year 

10 October Beginning of the academic year 

11 November Two long holidays because of church and national holidays  

12 December Christmas holidays, trading Sundays 

Note: Only special events in a given month are listed in the above table. We omitted events occurring every month i.e. 

one trading Sunday, the first and the last day of the month, and the tenth day of the month. 

Source: own elaboration. 

To verify our hypotheses concerning the accuracy of the forecasts obtained by means of TBATS and 

SARIMA with calendar effects, we compared the descriptive statistics for MAPE and SMAPE. These 

comparisons were made separately for forecasts in the selected periods and also jointly for all fore-

casts. The analysis of four models (i.e. the basic SARIMA model (denoted by S), the SARIMA model 

taking calendar and special effects into account (SARIMA with dummies; the model is denoted by 

S_CE), the basic TBATS (T) model and basic TBATS model extended with calendar and special effects 

(T_CE)), involved a comparison of the ex-post accuracy of forecast error. Moreover, the forecast errors 

for each ATM during the whole period under consideration were compared. The sample included 

74x12=888 MAPE errors and the same number of SMAPE errors for monthly forecasts. Analogous anal-

ysis was performed for two-week forecasts. The comparisons were made in pairs of models, i.e. S_CE 

vs S, T vs S, T_CE vs T and T_CE vs S_CE. Focusing on these pairs enables formulating conclusions about 

the feasibility of the methods used in forecasting ATM withdrawal data.  
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Table 2. Characteristics of two-week forecasts 

Period number Forecasts periods Calendar effects in the given periods 

1 17.01-30.01 End of the month, trading Sunday, occasional holidays 

2 5.02-18.02 10th day of the month, occasional holiday 

3 25.03-7.04 Turn of the month, trading Sunday 

4 11.04-24.04 Easter holidays 

5 1.05-14.05 Beginning of the month, 10th day of the month, long weekend 

6 17.06-30.06 Long weekend, Beginning of the summer holidays, trading Sunday 

7 6.07-19.07 Summer holidays 

8 1.08-14.08 Summer holidays, beginning of the month, every 10th day of the month 

9 26.08-8.09 Turn of the month, beginning of the school year 

10 01.10-14.10 Beginning of the month, beginning of the academic year 

11 28.10-11.11 Turn of the month, two long weekends 

12 16.12-29.12 Christmas period, trading Sundays 

Source: own elaboration. 

From the point of view of ATMs management, the best model should ensure the highest accuracy 

of out-of-sample forecasts as this may help to define strategies allowing for minimalization of opera-

tional costs. On the other hand, model specification is typically based on analyzing in-sample fit. In this 

study, we examined both of these issues. However, we paid attention mainly to checking the accuracy 

of out-of-sample forecasts, because this criterion is used in practice by managers of ATM networks. 

RESULTS AND DISCUSSION 

The results of the empirical analysis will be presented with respect to the accuracy measures and ho-

rizons of the forecasts. First of all, the statistics for forecast errors will be presented and evaluated. 

Then, the results of the comparison of forecast accuracy for each ATM will be summarized, depending 

on the type of error and the forecast horizon. 

Comparison of MAPE for Monthly Forecasting 

Table 3 presents the basic descriptive statistics of MAPE for monthly forecasts for 74 ATMs. To 

make the data easier to read, Figure 2 additionally shows a radar chart of mean MAPE calculated 

in selected months with respect to the type of model applied. 

Table 3. Descriptive statistics of MAPE for monthly forecasts 

Months 

Mean Median Standard deviation 

S 

[%] 

S_CE 

[%] 

T 

[%] 

T_CE 

[%] 

S 

[%] 

S_CE 

[%] 

T 

[%] 

T_CE 

[%] 

S 

[%] 

S_CE 

[%] 

T 

[%] 

T_CE 

[%] 

January  48.53 39.14 39.41 35.22 54.23 38.00 38.67 33.55 23.3 25.3 24.5 21.57 

February 34.87 30.88 30.01 29.86 32.15 26.89 27.51 27.37 18.9 19.8 18.5 15.79 

March 33.31 29.84 31.22 31.36 32.41 27.20 29.91 29.34 20.7 20.3 21.1 19.41 

April 51.79 35.88 42.80 33.22 61.70 33.53 44.82 30.90 26.1 20.1 25.6 19.95 

May 44.68 32.67 42.27 32.34 47.42 32.14 41.30 30.81 25 20.1 19.5 16.81 

June 40.83 32.16 33.85 29.93 39.38 29.55 34.29 29.21 18.9 13.6 20.9 17.61 

July 36.92 31.17 31.04 30.61 37.21 30.32 28.89 32.52 22.1 21.4 20.5 21.41 

August 39.50 32.52 34.21 29.45 38.03 29.12 31.45 27.33 21.7 19 20.7 17.82 

September 33.49 29.38 30.26 29.14 33.14 25.95 29.31 26.21 20.5 16.8 12.8 11.74 

October 36.29 29.21 31.73 29.99 35.97 27.85 27.87 26.64 22.6 22 17.5 15.07 

November 47.97 33.53 41.93 31.55 47.04 30.95 42.25 30.91 19.9 16.9 20.3 16.52 

December 53.73 43.76 52.11 40.64 85.07 46.21 66.71 41.77 25.5 24.7 17.5 13.51 

Total 41.82 33.34 36.74 31.94 45.31 31.48 36.91 30.55 22.10 20.01 19.95 17.27 

Note: The lowest values for each month and each descriptive statistics are highlighted. 

Source: own elaboration. 
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Figure 2. Radar chart for mean MAPE values (in % ) in each month for different methods 

Source: own elaboration. 

Analysis of Table 3 and Figure 2 allows one to conclude that the lowest values of relative forecasts 

error were usually found for TBATS model extended with calendar and special effects. The exception was 

the forecasts for March and October. The forecasting performance of other models, i.e. those not taking 

calendar effects into account, was visibly worse as the lowest relative forecast error was never achieved 

for such models. The average MAPE calculated for all forecasts (i.e. for all months) was lowest in the case 

of the T_SE model and did not exceed 32%. It was about 1.4% lower than average MAPE calculated for 

S_CE model and almost 5% lower than the mean value of MAPE for the basic TBATS model. From a com-

parison of median of MAPE for 74 ATMs, it follows that the minimal median was also usually obtained for 

the T_CE model. For this model, the lowest median of MAPE was achieved in eight out of 12 months. In 

the case of three out of the remaining four months, the best model (in terms of the lowest median value 

of MAPE) was S_CE, and in only one month (July) the basic TBATS model was found to have the lowest 

median of MAPE. We should emphasize that the T_CE was found to provide more accurate forecasts in 

months with a smaller number of special days (i.e. March or October). The standard deviation of MAPE 

errors suggests that this measure exhibits the lowest volatility for monthly forecasts obtained via T_CE. 

The volatility of MAPE for the basic TBATS model is lower than for SARIMA. Considering calendar and 

special days effects visibly reduces the average MAPE value both in SARIMA and TBATS models. In the case 

of the SARIMA model, the inclusion of calendar effects and special days effects decreased the mean value 

of relative forecast errors by approximately 8% and in the case of TBATS – by around 5%. 

To summarize, the basic TBATS model and TBATS model extended with calendar and special effects 

perform better with respect to forecasting daily withdrawals from ATMs than the SARIMA model (comp. 

Figure 2). We showed that including dummies (i.e. taking calendar and special effects into account) con-

siderably reduces average errors in both SARIMA and TBATS frameworks. To test the statistical significance 

of these results, we conducted a series of Friedman tests applied to test the significance of differences in 

mean MAPE obtained from four pairs of models: T and S, T and T_CE, S and S_CE and finally T_CE and 

S_CE. The tests confirmed statistically significant differences between mean MAPE in the case of all pairs 

of models compared, except the pair T_CE and S_CE.9 These results imply that basic TBATS allows obtain-

ing more accurate forecasts compared to basic SARIMA. Moreover, they provide grounds for claiming that 

taking seasonal and calendar effects into account when forecasting withdrawals from ATMs significantly 

reduces forecast errors. Significant improvement in forecast quality was observed both for SARIMA and 

TBATS. The TBATS forecasts errors are slightly smaller than those resulting from SARIMA models. How-

ever, this result was found statistically insignificant (p-value in Friedman test equal to 0.42). 

                                                                 
9 Complete results of conducting Friedman test for all forecasts horizons are available from the authors upon request. 
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Comparison of SMAPE for Monthly Forecasts 

To some extent, values of SMAPE for the monthly forecasts presented in Table 4 and Figure 3 con-

firmed the conclusions driven after the analysis of levels of MAPE. As far as SMAPE is concerned, the 

best monthly forecast (the lowest average relative forecast error) was obtained using TBATS model 

extended with calendar and special effects. The global average value of SMAPE for this model was 

29.45% and was 1.5% lower than the corresponding average for forecasts obtained using S_CE, and 

over 2% lower than its counterpart obtained from the TBATS model. In this context, SARIMA’s perfor-

mance was the worst. Analyzing forecasts for particular months, we can formulate slightly different 

conclusions compared to the case of MAPE. The T_CE was the best with respect to SMAPE in the case 

of the nine months under consideration. However, in the other three months, basic TBATS was better. 

In none of the cases tested the minimal value of SMAPE was found for SARIMA models. In the case 

of the median of SMAPE, slightly better results were obtained using SARIMA with calendar effects. 

Table 4. Descriptive statistics of SMAPE for monthly forecasts 

Months 

Mean Median Standard deviation 

S 

[%] 

S_CE 

[%] 

T 

[%] 

T_CE 

[%] 

S 

[%] 

S_CE 

[%] 

T 

[%] 

T_CE 

[%] 

S 

[%] 

S_CE 

[%] 

T 

[%] 

T_CE 

[%] 

January  45.86 33.36 31.92 31.69 46.23 32.10 30.42 29.86 18.08 19.64 13.65 11.13 

February 35.50 30.63 28.65 29.78 46.23 32.10 30.42 29.86 17.87 20.61 17.91 10.69 

March 34.23 30.86 28.75 29.07 32.70 29.50 26.60 27.88 17.82 18.50 21.27 12.17 

April 43.48 33.69 34.20 30.56 42.46 31.01 33.73 28.81 11.87 10.75 16.31 10.73 

May 42.59 33.85 34.50 31.95 40.75 32.92 32.91 29.88 13.52 13.62 16.24 11.15 

June 38.76 32.44 31.85 29.68 38.16 32.46 29.67 28.98 11.90 11.63 14.57 8.03 

July 35.05 28.71 27.74 28.41 32.91 27.67 27.42 27.37 13.17 12.11 17.15 10.04 

August 34.78 29.29 30.96 26.91 33.70 27.86 27.90 25.79 13.48 12.65 13.09 9.75 

September 33.15 27.47 29.81 26.93 33.16 25.52 27.49 25.74 10.27 9.86 15.11 8.60 

October 31.61 26.83 29.08 26.50 30.85 25.26 28.13 25.39 11.88 11.94 13.31 7.61 

November 37.41 29.44 31.97 27.40 35.02 27.77 30.65 25.62 9.16 10.90 12.94 8.81 

December 43.01 35.03 39.75 34.52 42.11 32.98 38.65 33.98 11.27 11.08 13.43 8.92 

Total 37.95 30.97 31.60 29.45 37.86 29.76 30.33 28.26 13.36 13.61 15.42 9.80 

Note: In the Table the lowest values are highlighted. 

Source: own elaboration. 

 

Figure 3. Radar chart for the means of SMAPE (in %) in particular months 

Source: own elaboration. 
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In the case of September, October, and December, the median of SMAPE was the lowest for S_CE. 

However, these values were similar to the corresponding values obtained from T_CE. Global stand-

ard deviation of SMAPE was lowest in the case of the T_CE model and reached the level of 9.8% – 

which is considerably lower than in the other three models. 

It follows from this part of the analysis that calendar and special effects have an important 

impact on the accuracy of forecasts. Therefore, one may claim that these effects should be taken 

into account in modelling ATM withdrawals. 

We demonstrated that usually T_CE provides slightly better forecasts than S_CE. However, in 

February, March, and July (in these months there are only a few calendar effects) the basic TBATS 

model is more accurate than TBATS model extended with calendar and special effects. This con-

vinces us that in the case of periods without strong calendar or special effects, basic models with 

no additional exogenous variables seem better alternatives for the purpose of forecasting. Similarly 

to the case of MAPE, we run a series of Friedman tests to check statistical significance of differences 

between mean SMAPE obtained from particular models. Only in the case of the pair S and S_CE the 

means of SMAPE were significantly different. 

Comparison of MAPE for Two-week Forecasts 

The results for two-week forecasts (Table 5, Figure 4) differed considerably from those obtained for 

forecasts with a monthly horizon. For two-week forecasts, SARIMA with dummies gave better results 

than T_CE. Both mean and median values of MAPE from this model showed the lowest value in seven 

periods under consideration. This effect was most visible at the turn of August and September and 

at the beginning of October. The difference in accuracy of forecast was approximately 5% in favor of 

S_CE model. The reason behind this phenomenon is probably the effects of the beginning of the 

school year and academic year – these are not seasonal. Global means and medians of MAPE are 

similar for S_CE and T_CE. Among models tested, the average standard deviation of MAPE of T_CE 

is the lowest. However, taking particular periods into account MAPE obtained in T_CE is smallest just 

in six out of 12 cases. Similarly to the case of monthly MAPE, we run a series of Friedman tests to 

check the statistical significance of differences between mean two-week MAPE obtained from par-

ticular models. The results led to similar conclusions as in the case of monthly MAPE. 

Table 5. Descriptive statistics of MAPE for two-week forecasts 

Period 

Mean Median Standard deviation 

S S_CE T T_CE S S_CE T T_CE S S_CE T T_CE 

[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

17.01-30.01 47.53 35.34 35.03 33.79 50.18 35.28 35.88 30.13 24.56 23.37 22.66 21.31 

5.02-18.02 42.98 45.16 32.83 26.69 41.53 46.98 30.37 24.75 19.86 21.12 17.89 17.52 

25.03-7.04 32.14 28.63 34.18 31.93 30.28 27.45 32.11 29.64 16.87 17.77 17.14 19.25 

11.04-24.04 47.12 39.98 50.04 40.90 107.41 40.30 73.22 41.35 121.43 74.99 27.86 22.70 

1.05-14.05 52.77 35.42 52.09 37.91 62.14 33.34 59.66 36.59 24.66 19.12 24.81 19.62 

17.06-30.06 41.45 31.35 44.15 32.56 43.84 29.02 45.19 29.70 26.24 15.88 21.78 14.67 

6.07-19.07 34.46 28.75 37.73 38.01 34.35 29.14 36.58 37.78 22.09 21.49 24.24 23.20 

1.08-14.08 41.08 26.86 33.44 25.66 41.05 25.10 32.88 25.06 24.25 22.16 21.49 22.43 

26.08-8.09 32.18 27.48 34.36 32.64 31.73 26.40 34.40 32.77 20.61 21.60 20.96 20.83 

01.10-14.10 33.29 27.15 36.59 32.53 30.22 24.25 32.48 28.98 18.13 15.95 18.59 16.92 

28.10-11.11 53.90 33.02 47.48 32.54 66.51 31.33 54.62 31.46 25.04 19.81 26.41 20.97 

16.12-29.12 52.02 51.95 53.29 51.18 149.31 60.96 122.46 60.62 19.84 25.60 22.76 25.62 

Total 42.58 34.26 40.93 34.69 57.38 34.13 49.15 34.07 30.30 24.91 22.22 20.42 

Note: In the Table, the smallest values for each forecasting period and each descriptive statistic are highlighted. 

Source: own elaboration. 
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Figure 4. Radar chart of mean values of MAPE (in %) for two-week forecasts 

Source: own elaboration. 

Comparison of SMAPE for Two-week Forecasts 

Global mean SMAPE for two-week forecasts was the smallest for SARIMA models with dummies (Table 

6, Figure 5). For the S_CE model, the means of SMAPE for particular periods were only slightly (approx-

imately 0.1%) lower than the corresponding values obtained from the T_CE model. However, the S_CE 

model turned out to be more accurate than T_CE in seven out of 12 cases. A similar regularity was 

found when comparing medians of SMAPE. It is in favour of the T_CE models that the volatility of errors 

was lower than its counterpart obtained from S_CE in nine out of 12 forecast periods. 

Table 6. Descriptive statistics of SMAPE for two-week forecasts 

Period 

Mean Median Standard deviation 

S S_CE T T_CE S S_CE T T_CE S S_CE T T_CE 

[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 

17.01-30.01 39.25 31.52 32.46 30.07 38.00 29.30 32.25 27.16 17.82 16.86 18.24 9.01 

5.02-18.02 42.10 37.48 32.87 26.89 39.83 36.40 30.21 25.32 20.23 12.71 12.12 9.13 

25.03-7.04 33.26 29.95 35.21 30.92 31.42 27.61 33.99 29.32 12.63 10.97 17.27 10.40 

11.04-24.04 53.57 35.08 45.36 34.53 55.70 32.81 45.80 33.19 14.73 11.88 15.26 12.35 

1.05-14.05 50.26 37.47 41.92 37.47 53.15 37.05 40.17 36.52 15.90 13.57 16.05 12.91 

17.06-30.06 37.16 30.81 39.19 31.91 36.21 28.82 36.45 29.30 13.51 13.02 14.83 13.16 

6.07-19.07 34.07 27.92 33.58 33.44 33.43 26.54 32.60 32.53 15.02 11.40 17.99 11.61 

1.08-14.08 39.79 28.19 34.34 26.82 38.05 24.94 29.98 24.19 17.29 14.46 13.55 10.46 

26.08-8.09 33.07 27.82 35.22 30.83 31.82 24.31 32.84 30.05 11.36 11.50 15.32 8.91 

01.10-14.10 31.12 26.57 34.16 30.77 30.43 24.52 32.49 27.67 12.66 12.67 15.44 10.24 

28.10-11.11 48.47 32.34 39.72 32.69 47.64 31.41 39.65 30.27 13.35 12.33 15.89 10.34 

16.12-29.12 59.47 43.98 53.54 44.05 60.57 42.63 56.03 44.70 14.61 10.60 17.48 9.08 

Total 41.80 32.43 38.13 32.53 41.36 30.53 36.87 30.85 14.92 12.66 15.79 10.63 

Note: In the Table the lowest values are highlighted. 

Source: own elaboration. 

Based on the presented comparison of statistics of relative forecast errors, we may see that taking 

calendar effects (dummies) in the SARIMA model into account significantly improved the forecast accu-

racy for the horizons analyzed. Extending TBATS with calendar and special days effects improved the 

forecast accuracy in the case of two-week forecasts. Comparing SARIMA and TBATS both without dum-

mies (not taking calendar effects into account) implies that TBATS-based forecasts are more accurate 
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than the SARIMA-based ones. One of possible explanations is that TBATS allows modelling multiple sea-

sonal patterns at the same time, it is not limited to just one pattern as in SARIMA. In the case of both 

models extended with dummies, the results were not unequivocal. In the case of monthly forecasts, we 

found smaller forecast errors for the TBATS model extended with calendar and special effects. However, 

in the case of two-week forecasts, SARIMA with dummies provided more accurate forecasts. Analogously 

to the case of two-week MAPE, we run the series of Friedman tests and obtained similar conclusions. 

 

 

Figure 5. Radar chart of mean values of SMAPE (in %) for two-week forecasts 

Source: own elaboration. 

Results of Comparing Forecasts for Particular ATMs 

The results in the previous sections concerning the quality of the models used to forecast with-

drawals were not unequivocal. Therefore, we conducted additional, extended analyses to evaluate 

the feasibility of the methods and models. This analysis allowed us to compare the MAPE and 

SMAPE of forecasts for each ATM and each period. A comparison of forecasts was made for four 

pairs of models. The results are presented in Table 7. 

Table 7. Comparison of the pairs of models 

Comparison of the pairs of models 
Monthly forecasts Two weeks forecasts 

MAPE SMAPE MAPE SMAPE 

T vs S 73.3% 76.9% 66.2% 68.5% 

T_CE vs S_CE 59.3% 61.4% 48.4% 51.8% 

S_CE vs S 95.7% 97.1% 92.9% 92.7% 

T_CE vs T 75.8% 69.9% 83.0% 84.0% 

Source: own elaboration. 

As one can see in Table 7, monthly MAPE obtained from TBATS forecasts were better in 73.3 % pairs. 

This effect was even stronger for SMAPE (76.9%). In the case of two-week forecasts, TBATS also provided 

more accurate forecasts than SARIMA (the difference is about 7%-8%). Compared to S_CE the T_CE 

model turned out more accurate in about 60% of pairs (MAPE and SMAPE). A comparison of the accuracy 

of models taking calendar effects into account, with the basic models, i.e. pairs. S_CE vs S and T_CE vs T, 

shows that extended models are significantly better than basic ones. In more than 90% of cases tested, 

SARIMA models with dummies are more accurate than basic SARIMA. As we showed in previous sections, 

these regularities were confirmed by Friedman test. 

To summarize, the accuracy of forecasts of SARIMA and TBATS extended with calendar effects was 

similar. Only in particular cases, the TBATS model extended with calendar and special effects outper-

formed SARIMA in terms of forecast accuracy, albeit this result was not found to be statistically significant. 
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CONCLUSIONS 

Forecasting withdrawals from ATMs is an important part of managing an ATM network. Managers 

of ATM networks try to implement solutions that improve forecasting procedures to reduce the 

cost of replenishing ATMs. Proper forecasts of the cash necessary for ATMs reduce the operational 

costs of the networks. 

In this study, a possible use of TBATS models to forecast withdrawals from ATMs was investigated. 

In practice, the SARIMA model is widely used as a forecasting tool. Our goal was to compare the 

SARIMA model with the TBATS model, both estimated with and without taking into account calendar 

and special effects. The main focus of this study was to verify the impact of calendar and seasonal 

effects on the forecast accuracy. We identified calendar and seasonal events (e.g., holidays) and at-

tempted to establish their impact on the forecast accuracy. 

The empirical results confirmed that in most cases extended models are more accurate (lower 

MAPE and SMAPE values) compared to basic models. The hypothesis that the TBATS model is better 

(i.e. ensures lower values of MAPE and SMAPE) was verified only to some extent. When calendar 

effects were omitted, TBATS delivered forecasts of considerably better accuracy than SARIMA. Af-

ter taking calendar effects into account the TBATS model was only slightly better than SARIMA (lack 

of statistical significance). Noteworthy, the TBATS model is used rarely as a forecasting tool by ATM 

networks. The results of this study may encourage further studies on the applications of TBATS 

models for forecasting the cash necessary in ATMs and in this way improve the network manage-

ment. One observation is worth to be noted here. As we proved the forecasts obtained from basic 

TBATS models are in general significantly more accurate compared to the forecasts from basic 

SARIMA models. At the same time, the accuracy of the forecasts was nearly identical when calendar 

and special days are taken into consideration. Since existing implementations of TBATS models in 

statistical software do not allow for inclusion of exogenous variables, one could follow the idea of 

the hybrid approach presented in this article to incorporate the calendar and special days effects 

into TBATS framework. In our opinion, a desired direction of further research would be to focus on 

extending the range of possible formulations of TBATS models available in widely-used econometric 

software (e.g., R), especially in terms of the inclusion of time dummies. 

This research suffers from several other limitations. The accuracy of forecasts may have de-

pended on the location of the ATM. We can hypothesize that in some types of locations taking 

calendar days (e.g., the day of the month) into account can reduce forecast errors. Because of the 

lack of data on the location of individual ATMs, we were unable to check the impact of this param-

eter on the improvement of forecast accuracy. 

Another limitation of this research is the fact that the data came from only one city. Future re-

search should be conducted to verify the possible applications of the models in particular types of 

locations. Finally, an interesting direction of future research would be to study the benefits of analyzing 

the usefulness of probabilistic forecasts (not only point forecasts as in this article) in the problem of 

managing ATMs network. 

This study may inspire further, more complex analysis of TBATS models with respect to employing 

this type of model in forecasting cash demand in ATMs. This type of research may be useful for man-

agers who estimate the demand for cash in ATM networks and branches of banks.  
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Appendix A1: 

 

 

Figure A1. Average levels of monthly cash withdrawals with respective levels 

of SARIMA-based MAE for 74 ATMs tested 

Source: own elaboration.  
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Figure A2. Main features of time series of withdrawals from a randomly selected ATM 

Notes: The Figure presents all the effects discussed in detail in Figure 1 but this time derived for a single randomly selected ATM. 

Source: own elaboration. 

 

Appendix A3: 

The R scripts used in this study may be downloaded from: 

https://onedrive.live.com/?v=validatepermission&id=7A073B0828CAC72F%21252218&challengeTo-

ken=AI2FhJ7R7MeAoVo 

(password: agharticle1321)  
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