Skip to main navigation menu Skip to main content Skip to site footer

Drivers of structural convergence: Accounting for model uncertainty and reverse causality

DOI:

https://doi.org/10.15678/EBER.2021.090112

Abstract

Objective: The objective of the article is the examination of factors that affect structural convergence and assessing their robustness.

Research Design & Methods: Determinants of structural similarity are examined using the Bayesian model averaging with dilution prior to establishing robust drivers in the long run. The short-run analysis is conducted using Bayesian model averaging within a dynamic panel framework with weakly exogenous regressors.

Findings: The application of Bayesian model averaging allowed for the identification of 12 variables associated with more similar production structures, among others, the bilateral total and intra-industry trade, the level of development, geographical distance, foreign direct investment flows, technology, corruption, and membership in the EU. Accounting for reverse causality showed that trade induces divergence in the short run – in line with predictions of neoclassical theories – but is associated with more similar production structures in the long run. Interestingly, even though old EU countries are characterised by more homogenous production structures, EU membership is associated with structural divergence once differences in income are included in the model. Even more unexpectedly, countries with more similar production structures are characterised by more similar and generally lower levels of corruption.

Implications & Recommendations: The analysis shows that policies aiming at the promotion of FDI and technological transfers can speed up the process of structural convergence.

Contribution & Value Added: The paper presents the first systematic analysis into the sources of structural similarity.

       

Keywords

structural similarity; structural convergence; economic structure; economic integra-tion; European Union

(PDF) Save

Author Biography

Krzysztof Beck

Economist, econometrician, researcher, academic lecturer, and Assistant Professor at the Lazarski University. Studied at the Cracow University of Economics and received a PhD in Economics at the Faculty of International Business and Economics at the Poznan University of Business and Economics. Recipient of the Statistics Poland Award for the best doctoral dissertation in Statistics and the National Bank of Poland’s Award for the best doctoral dissertation in Economics. Lecturer on English-language double diploma program accredited by Coventry University. His research activities include participation in research projects among others financed by the National Science Center. The author of dozens of papers and couple books, mainly in the field of macroeconomics, international economics, and econometrics, published both in Polish and English; also the author of statistical software. His main interests include international economics, international business cycles, international trade, currency unions, macroeconomics, econometrics, applied econometrics, mathematical economics, Bayesian statistics, and programming.

Correspondence to: Dr. Krzysztof Beck, Lazarski University, ul. Świeradowska 43, 02-662 Warszawa, Poland, e-mail: beckkrzysztof@gmail.com


References

  1. Amiti, M. (1999). Specialization patterns in Europe. Review of World Economics, 135(4), 573-593. https://doi.org/10.1007/BF02707385
  2. Baxter, M., & Kouparitsas, M. (2003). Trade structure, Industrial structure, and International Business Cycles. American Economic Review, 93(2), 51-56. https://doi.org/10.1257/000282803321946796
  3. Androniceanu, A., Gherghina, R., & Ciobanasu, M. (2019). The interdependence between fiscal public poli-cies and tax evasion. Administratie si Management Public, 32, 32-41. https://doi.org/10.24818/amp/2019.32-03
  4. Beck, K. (2013). Determinants of Business Cycles Synchronization in the European Union and the Euro Area. Equilibrium. Quarterly Journal of Economics and Economic Policy, 8(4), 25-48. https://doi.org/10.12775/EQUIL.2013.025
  5. Beck, K. (2014). Determinanty synchronizacji cykli koniunkturalnych w krajach Unii Europejskiej w latach 1990-2007. Gospodarka w Teorii i Praktyce, 1(34), 5-20.
  6. Beck, K. (2017). Bayesian Model Averaging and jointness Measures: Theoretical Framework and Application to the Gravity Model of Trade. Statistics in Transition New Series, 18(3), 393-412. https://doi.org/10.21307/stattrans-2016-077
  7. Beck, K. (2019). What drives business cycle synchronization? BMA results from the European Union. Baltic Journal of Economics, 19(2), 248-275. https://doi.org/10.1080/1406099X.2019.1652393
  8. Beck, K. (2020a). Decoupling after the crisis: Western and eastern business cycles in the European Union. Eastern European Economics, 58(1), 68-82. https://doi.org/10.1080/00128775.2019.1656086
  9. Beck, K. (2020b). What drives international trade? Robust analysis for the European Union. Journal of Inter-national Studies, 13(3), 68-84. https://doi.org/10.14254/2071-8330.2020/13-3/5
  10. Beck, K. (2020c). Migration and business cycles: testing the OCA theory predictions in the European Union. Applied Economics Letters. https://doi.org/10.1080/13504851.2020.1798339
  11. Beck, K., & Janus, J. (2013). Aggregate Demand Disturbances in the Visegrad Group and the Eurozone. Entre-preneurial Business and Economics Review, 1(3), 7-20. https://doi.org/10.15678/EBER.2013.010302
  12. Beck, K., & Stanek, P. (2019). Globalization or regionalization of stock markets? The case of central and east-ern European countries. Eastern European Economics, 57(4), 317-330. https://doi.org/10.1080/00128775.2019.1610895
  13. Bekiros, S., Nguyen, D.K., Uddin, G.S., & Sjö, B. (2015). Business cycle (de)synchronization in the aftermath of the global financial crisis: Implications for the Euro area. Studies in Nonlinear Dynamics & Econometrics, 19(5), 609-624. https://doi.org/10.1515/snde-2014-0055
  14. Bieleková, E., & Pokrivčák, J. (2020). Determinants of International Beer Export. AGRIS on-line Papers in Eco-nomics and Informatics, 12(2), 17-27. https://doi.org/10.7160/aol.2020.120202
  15. Bilan, Y., Mishchuk, H., Samoliuk, N., & Mishchuk, V. (2020). Gender discrimination and its links with com-pensations and benefits practices in enterprises. Entrepreneurial Business and Economics Review, 8(3), 189-204. https://doi.org/10.15678/EBER.2020.080311
  16. Bonatti, L., & Felice, G. (2008). Endogenous growth and changing sectoral composition in advanced econo-mies. Structural Change and Economic Dynamics, 19(2), 109-131. https://doi.org/10.1016/j.strueco.2007.07.002
  17. Boppart, T. (2014). Structural Change and the Kaldor Facts in a Growth Model With Relative Price Effects and Non-Gorman Preferences. Econometrica, 82(6), 2167-2196. https://doi.org/10.3982/ECTA11354
  18. Brülhart, M. (1998a). Economic Geography, Industry Location, and Trade: The Evidence. The World Econom-ics, 21(6), 775-801. https://doi.org/10.1111/1467-9701.00163
  19. Brülhart, M. (1998b). Trading Places: Industrial Specialization in the European Union. Journal of Common Market Studies, 36(3), 319-346. https://doi.org/10.1111/1468-5965.00113
  20. Buera, F.J., Kaboski, J.P., & Rogerson, R. (2015). Skill-based structural change. NBER Working Paper, 21165. Retrieved from https://www.nber.org/system/files/working_papers/w21165/w21165.pdf on October 23, 2020.
  21. Caron, J., Fally, T., & Markusen, J. (2014). International Trade Puzzles: A solution Linking Production and Preferences. The Quarterly Journal of Economics, 129(3), 129-173. https://doi.org/10.1093/qje/qju010
  22. Caron, J., Fally, T., & Markusen, J. (2017). Per Capita Income and the Demand for Skills. NBER Working Paper, 23482. Retrieved from https://www.nber.org/system/files/working_papers/w23482/w23482.pdf on Oc-tober 23, 2020.
  23. Caselli, F., & Coleman II, W.J. (2001). The U.S. Structural transformation and Regional Convergence: A Rein-terpretation. Journal of Political Economy, 109(3), 584-616. https://doi.org/10.1086/321015
  24. Chang, J-J., Lu, H-c., & Tsai, H-f. (2015). Corruption, growth, and increasing returns to production specializa-tion. International Journal of Economic Theory, 11(3), 329-345. https://doi.org/10.1111/ijet.12067
  25. Chiappini, R. (2014). Persistence vs. mobility in industrial and technological specialisations: evidence from 11 Euro area countries. Journal of Evolutionary Economics, 24(1), 159-187. https://doi.org/10.1007/s00191-013-0331-7
  26. Campos, N.F., & Macchiarelli, C. (2016). Core and Periphery in the European Monetary Union: Bayoumi and Eichengreen 25 years later. Economic Letters, 147(C), 127-130. https://doi.org/10.1016/j.econlet.2016.07.040
  27. Combes, P.P., & Overman, H.G. (2004). The spatial Distribution of Economic Activities in the European Un-ion. In J.V. Henderson & J.F. Thisse (Eds.), Handbook of Regional and Urban Economics. Volume 4 (pp. 2845-2909). Amsterdam: Elsevier. https://doi.org/10.1016/S1574-0080(04)80021-X
  28. Coppola, A., Ianuario, S., Chinnici, G., Di Vita, G., Pappalardo, G., & D’Amico, D. (2018). Endogenous and Exogenous Determinants of Agricultural Productivity: What Is the Most Relevant for the Competitive-ness of the Italian Agricultural Systems?. AGRIS on-line Papers in Economics and Informatics, 10(2), 33-47. ISSN 1804-1930. https://doi.org/10.7160/aol.2018.100204
  29. Crespo, N., & Fontoura, P. (2009). Determinant Factors of Structural Similarity at the Regional Level: evi-dence from Portugal. ISEG Department of Economics Working Papers, 28. Retrieved from https://depeco.iseg.ulisboa.pt/wp/wp282009.pdf on October 23, 2020.
  30. Crudu, R. (2019). The role of innovative entrepreneurship in the economic development of EU member countries. Journal of Entrepreneurship, Management and Innovation, 15(1), 35-60. https://doi.org/10.7341/20191512
  31. Degiannakis, S., Duffy D., & Fillis, G. (2014). Business cycle synchronization in EU: A time-varying approach. Scottish Journal of Political Economy, 61, 348-70. https://doi.org/10.1111/sjpe.12049
  32. Doppelhofer, G., & Weeks, M. (2009). Jointness of Growth Determinants. Journal of Applied Econometrics, 24(2), 209-244. https://doi.org/10.1002/jae.1046
  33. Duarte, M., & Restuccia, D. (2010). The Role of the Structural Transformation in Aggregate Productivity. The Quarterly Journal of Economics, 125(1), 1501-1552. https://doi.org/10.1162/qjec.2010.125.1.129
  34. Dupuch, S., & Maizer, J. (2002). Mobilité du capital et spécialisation en Union européenne. Revue Économique, 53(3), 483-492.
  35. Eicher, T., Papageorgiou, C., & Raftery, A.E. (2011). Determining Growth Determinants: Default Priors and Predictive Performance in Bayesian Model Averaging. Journal of Applied Econometrics, 26(1), 30-55. https://doi.org/10.1002/jae.1112
  36. Feenstra, R.C. (2015). Advanced International Trade: Theory and Evidence. New Jersey: Princeton University Press.
  37. Feenstra, R.C., Inklaar, R., & Timmer, M.P. (2015). The Next Generation of the Penn World Table. American Economic Review, 105(10), 3150-3182. https://doi.org/10.1257/aer.20130954
  38. Feldkircher, M., & Zeugner, S. (2009). Benchmark Priors Revisited: On Adaptive Shrinkage and the Super-model Effect in Bayesian Model Averaging. IMF Working Paper, 202. https://doi.org/10.5089/9781451873498.001
  39. Felice, G. (2016). Size and composition of public investment, sectoral composition and growth. European Journal of Political Economy, 44, 136-158. https://doi.org/10.1016/j.ejpoleco.2016.07.001
  40. Fernández, C., Ley, E., & Steel, M. (2001). Benchmark priors for Bayesian model averaging. Journal of Econo-metrics, 100(2), 381-427. https://doi.org/10.1016/s0304-4076(00)00076-2
  41. Ferroni, F., & Klaus, B. (2015). Euro Area business cycles in turbulent times: convergence or decoupling?. Applied Economics, 47(34-35), 3791-815. https://doi.org/10.1080/00036846.2015.1021458
  42. Fixler, D.J., & Siegel, D. (1999). Outsourcing and productivity growth in services. Structural Change and Eco-nomic Dynamics, 10(2), 177-194. https://doi.org/10.1016/S0954-349X(98)00048-4
  43. Foellmi, R., & Zweimüller, J. (2008). Structural change, Engel’s consumption cycles and Kaldor’s facts of eco-nomic growth. Journal of Monetary Economics, 55(7), 1317-1328. https://doi.org/10.1016/j.jmoneco.2008.09.001
  44. Foster, D., & George, E. (1994). The Risk Inflation Criterion for Multiple Regression. The Annals of Statistics, 22(4), 1947-1975. https://doi.org/10.1214/aos/1176325766
  45. George, E. (2010). Dilution priors: compensating for model space redundancy. In J. Berger, T. Cai, & I. John-stone (Eds.), Borrowing Strength: Theory Powering Applications—A Festschrift for Lawrence D. Brown (pp. 185-165). Beachwood, OH: Institute of Mathematical Statistics. https://doi.org/10.1214/10-IMSCOLL611
  46. George, E., & Foster, D. (2000). Calibration and empirical Bayes variable selection. Biometrika, 87(4), 731-747. https://doi.org/10.1093/biomet/87.4.731
  47. Grigoraş, V., & Stanciu, I.E. (2016). New evidence on (de)synchronization of business cycles: Reshaping the European business cycle. International Economics, 147(C), 27-52. https://doi.org/10.1016/j.inteco.2016.03.002
  48. Grodzicki, M. (2014). Structural Similarities of the Economies of the European Union. Equilibrium. Quarterly Journal of Economics and Economic Policy, 9(1), 93-117. https://doi.org/10.12775/EQUIL.2014.006
  49. Grossman, G.M., & Helpman, E. (1980). Comparative Advantage and Long-Run Growth. American Economic Review, 80(4), 796-815.
  50. Grossman, G.M., & Helpman, E. (1991a). Trade, knowledge spillovers, and growth. European Economic Re-view, 35(2-3), 517-526. https://doi.org/10.1016/0014-2921(91)90153-A
  51. Grossman, G.M., & Helpman, E. (1991b). Innovation and Growth in the Global Economy. Cambridge, MA: The MIT Press.
  52. Hansen, M., & Yu, B. (2001). Model selection and the principle of minimum description length. Journal of the American Statistical Association, 96(454), 746-774. https://doi.org/10.1198/016214501753168398
  53. Herrendorf, B., Rogerson, R., & Valentinyi, A. (2014). Growth and Structural Transformation. In P. Aghion, & S.N. Durlauf (Eds.), Handbook of Economic Growth, Volume 2B. (pp. 855-941). Amsterdam: Elviser. https://doi.org/10.1016/B978-0-444-53540-5.00006-9
  54. Hoeting, J., Madigan, D., Raftery, A.E., & Volinsky, C. (1999). Bayesian Model Averaging: A Tutorial. Statistical Science, 14(4), 382-417. https://doi.org/10.1214/ss/1009212814
  55. Höhenberger, N., & Schmiedeberg, C. (2008). Structural convergence of European Countries. CEGE Discussion Paper, 75.
  56. Imbs, J., Montenegro, C., & Wacziarg, R. (2012). Economic integration and structural change. Retrieved from https://www.semanticscholar.org/paper/Economic-Integration-and-Structural-Change-Wacziarg/5c695098a815d67b92e485d730281651dc924059?tab=citations on October 23, 2020.
  57. Imbs, J., & Wacziarg, R. (2003). Stages of Diversification. American Economic Review, 93(1), 63-86. https://doi.org/10.1257/000282803321455160
  58. Janus, J. (2019). Real interest rate differentials between Central and Eastern European countries and the euro area. Equilibrium. Quarterly Journal of Economics and Economic Policy, 14(4), 677-693. https://doi.org/10.24136/eq.2019.031
  59. Jones, C.I. (2013). Misallocation, Economic Growth, and Input-Output Economics. In D. Acemoglu, M. Arella-no, & E. Dekel (Eds.), Advances in Economics and Econometrics, Volume 2: Applied Economics (pp. 419-456). New York: Cambridge University Press. https://doi.org/10.1017/CBO9781139060028.011
  60. Kass, R.E., & Raftery, A. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. https://doi.org/10.1080/01621459.1995.10476572
  61. Kass, R., & Wasserman, L. (1995). A Reference Bayesian Test for Nested Hypotheses and Its Relationship to the Schwarz Criterion. Journal of the American Statistical Association, 90(431), 928-934. https://doi.org/10.1080/01621459.1995.10476592
  62. Koren, M., & Tenreyro, S. (2007). Volatility and Development. The Quarterly Journal of Economics, 122(1), 243-287. https://doi.org/10.1162/qjec.122.1.243
  63. Kinnunen, J., Androniceanu, A., & Georgescu, I. (2019). The role of economic and political features in classifi-cation of countries in transition by Human Development Index. Informatica Economică, 23(4), 26-40. https://doi.org/10.12948/issn14531305/23.4.2019.03
  64. Krugman, P. (1979). Increasing Returns, Monopolistic competition, and International Trade. Journal of Inter-national Economics, 9(4), 469-479. https://doi.org/10.1016/0022-1996(79)90017-5
  65. Krugman, P. (1980). Scale Economies, Product Differentiation and the Pattern of Trade. American Economic Review, 70(5), 950-959.
  66. Krugman, P. (1991). Geography and Trade. Cambridge, MA: The MIT Press.
  67. Krugman, P. (1993). Lessons of Massachusetts for EMU. In F. Torres, & F. Giavazzi (Eds.) Adjustment and Growth in the European Monetary Union (pp. 241-266). Cambridge/New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511599231.016
  68. Krüger, J.J. (2010). Productivity And Structural Change: A Review Of The Literature. Journal of Economic Sur-veys. 22(2), 330-363. https://doi.org/10.1111/j.1467-6419.2007.00539.x
  69. Ley, E., & Steel, M. (2007). Jointness in Bayesian variable selection with applications to growth regression. Journal of Macroeconomics, 29(3), 476-493. https://doi.org/10.1016/j.jmacro.2006.12.002
  70. Ley, E., & Steel, M. (2009). On the Effect of Prior Assumptions in Bayesian Model Averaging with Applications to Growth Regressions. Journal of Applied Econometrics, 24(4), 651-674. https://doi.org/10.1002/jae.1057
  71. Ley, E., & Steel, M. (2012). Mixtures of g-priors for Bayesian model averaging with economic applications. Journal of Econometrics, 171(2), 251-266. https://doi.org/10.1016/j.jeconom.2012.06.009
  72. Liang, F., Paulo, R., Molina, G., Clyde, M.A., & Berger, J.O. (2008). Mixtures of g Priors for
  73. Bayesian Variable Selection. Journal of the American Statistical Association, 103(481), 410-423. https://doi.org/10.1198/016214507000001337
  74. Linder, S.B. (1961). An Essay on Trade and Transformation. Stockholm: Almqvist & Wicksell.
  75. Madigan, D., York, J., & Allard, D. (1995). Bayesian Graphical Models for Discrete Data. International Statisti-cal Review, 63(2), 215-23. https://doi.org/10.2307/1403615
  76. Masanjala, W., & Papageorgiou, C. (2008). Rough and Lonely Road to Prosperity: a Reexamination of the Sources of Growth in Africa using Bayesian Model Averaging. Journal of Applied Econometrics, 23(5), 671-682. https://doi.org/10.1002/jae.1020
  77. Matsuyama, K. (2009). Structural change in an interdependent world: a global view of manufacturing de-cline. Journal of the European Economic Association, 7(2-3), 478-486. https://doi.org/10.1162/JEEA.2009.7.2-3.478
  78. Midelfart-Knarvik, K.H., & Overman, H.G. (2002). Delocation and European integration: is structural spending justified?. Economic Policy, 17(33), 321-359. https://doi.org/10.1111/1468-0327.00091
  79. Midelfart-Knarvik, K.H., Overman, H.G., Redding, S.J., & Venables, A.J. (2002). Integration and Industrial spe-cialization in the European Union. Revue Économique, 53(3), 469-481.
  80. Midelfart-Knarvik, K.H., Overman, H.G., & Venables, A.J. (2003). Monetary Union and the Economic Geogra-phy of Europe. Journal of Common Market Studies, 41(5), 847-868. https://doi.org/10.1111/j.1468-5965.2003.00466.x
  81. Moral-Benito, E. (2012). Determinants of Economic Growth: A Bayesian Panel Data Approach. Journal of Economics and Statistics, 94(2), 566-579. https://doi.org/10.1162/REST_a_00154
  82. Moral-Benito, E. (2013). Likelihood-Based Estimation of Dynamic Panels with Predetermined Regressors. Journal of Business and Economic Statistics, 31(4), 451-472. https://doi.org/10.1080/07350015.2013.818003
  83. Moral-Benito, E. (2016). Growth Empirics in Panel Data Under Model Uncertainty and Weak Exogeneity. Journal of Applied Econometrics, 31(3), 584-602. https://doi.org/10.1002/jae.2429
  84. Ngai, L.R., & Pissarides, C.A. (2007). Structural change in a multi-sector model of growth. American Economic Review, 97(1), 429-443. https://doi.org/10.1257/aer.97.1.429
  85. OECD. (2013) Interconnected economies: benefiting from global value chains. Synthesis Report, OECD. Re-trieved from https://www.oecd.org/sti/ind/interconnected-economies-GVCs-synthesis.pdf on October 23, 2020.
  86. Olczyk, M., & Lechman, E. (2011). Structural convergence among selected European countries. Multidimen-sional analysis. MPRA Paper, 33656. Retrieved from https://mpra.ub.uni-muenchen.de/33656/ on Octo-ber 23, 2020.
  87. Paliokaite, A. (2019). An innovation policy framework for upgrading firm absorptive capacities in the context of catching-up economies. Journal of Entrepreneurship, Management and Innovation, 15(3), 103-130. https://doi.org/10.7341/20191534
  88. Parteka, A. (2009). Employment Specialisation in the Enlarged European Union. Ekonomia, 24, 6-21.
  89. Peneder, M., & Streicher, G. (2018). De-industrialization and comparative advantage in the global value chain. Economic Systems Research, 30(1), 85-104. https://doi.org/10.1080/09535314.2017.1320274
  90. Popoola, O., Alege, P.O., Gershon, O., & Asaleye, J.A. (2019). Human capital channels and productivity growth: Evidence from Nigeria. Economics and Sociology, 12(4), 59-73. https://doi.org/10.14254/2071-789X.2019/12-4/3
  91. Raftery, A.E. (1995). Bayesian Model Selection in Social Research. Sociological Methodology, 25, 111-163.
  92. Ruppert, D., & Carroll, R.J. (2000). Spatially-adaptitive penalities for spline fitting. Australian and New Zeland Journal of Statistics, 42(2), 205-223. https://doi.org/10.1111/1467-842X.00119
  93. Ruppert, D., Wand, M.P., & Carroll, R.J. (2000). Semiparametric Regression. New York: Cambridge University Press.
  94. Sala-I-Martin, X., Doppelhofer, G., & Miller, R. (2004). Determinants of Long-Term Growth: A Bayesian Aver-aging of Classical Estimates (BACE) Approach. American Economic Review, 94(4), 813-835. https://doi.org/10.1257/0002828042002570
  95. Stachova, K., Stacho Z., Raišienė, A.G., & Barokova, A. (2020). Human resource management trends in Slo-vakia. Journal of International Studies, 13(3), 320-331. https://doi.org/10.14254/2071-8330.2020/13-3/21
  96. Standaert, S. (2015). Divining the level of corruption: a bayesian state-space approach. Journal of Compara-tive Economics, 43(3), 782-803. https://doi.org/10.1016/j.jce.2014.05.007
  97. Stijepic, D., & Wagner, H. (2015). Structural change, aggregate growth and government services. German Economic Association annual Conference 2015 (Muenster): Economic Development – Theory and Policy, 112904. Retrieved from https://www.econstor.eu/bitstream/10419/215647/1/ceames-dp-05rev.pdf on October 23, 2020.
  98. Storper, M., Chen, Y., & Paolis, F. (2002). Trade and the location of industries in the OECD and the European Union. Journal of Economic Geography, 2(1), 73-107. https://doi.org/10.1093/jeg/2.1.73
  99. Święcki, T. (2017). Determinants of structural change. Review of Economic Dynamics, 24, 95-131. https://doi.org/10.1016/j.red.2017.01.007
  100. Van Biesebroeck, J. (2011). Dissecting intra-industry trade. Economic Letters, 111(2), 71-75. https://doi.org/10.1016/j.econlet.2010.10.004
  101. van Neuss, L. (2019). The Drivers of Structural Change. Journal of Economic Surveys, 33(1), 309-349. https://doi.org/10.1111/joes.12266
  102. Vechiu, N., & Makhlouf, F. (2014). Economic integration and specialization in production in the EU27: does FDI influence countries’ specialization?. Empirical Economics, 46(2), 543-572. https://doi.org/10.1007/s00181-013-0682-9
  103. Vogiatzoglou, K. (2007). Vertical Specialization and New Determinants of FDI: Evidence from South and East Asia. Global Economic Review, 36(3), 245-266. https://doi.org/10.1080/12265080701561984
  104. Wacziarg, R. (2004). Structural convergence. CDDRL Working Papers, 8. Retrieved from https://fsi-live.s3.us-west-1.amazonaws.com/s3fs-public/Structural_Convergence.pdf on October 23, 2020.
  105. Zellner, A. (1986). On Assessing Prior Distributions and Bayesian Regression Analysis with g Prior Distribu-tions. In P.K. Goel & A. Zellner (Eds.), Bayesian Inference and Decision Techniques: Essays in Honor of Bru-no de Finetti. Studies in Bayesian Econometrics 6. New York: Elsevier.
  106. Zeugner, S., & Feldkircher, M. (2015). Bayesian Model Averaging Employing Fixed and Flexible Priors: The BMS Package for R. Journal of Statistical Software, 68(4), 1-37. https://doi.org/0.18637/jss.v068.i04
  107. Zhang, Y., & Clark, D.P. (2009). Pattern and Determinants of United States’ Intra-industry trade. International Trade Journal, 23(3), 325-356. https://doi.org/10.1080/08853900903012310

Downloads

Download data is not yet available.